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Abstract

The incompressible laminar flow past a
flat plate moving at a small distance par-
allel to the ground is investigated theo-
retically. The flow field is calculated by
numerical integration of the vorticity
transport equation and the Poisson equation
for the streamfunction. Computed pressure
and shear stress distribution along the
ground and on the plate surface are given
for low Reynolds numbers and several dis-
tances between the lower surface of the
plate and the ground.

Introduction

Dealing with the aerodynamics of high
speed ground transportation vehicles one
encounters flow regions between the moving
body, and for instance,the fixed rail, or
between a vertical standing track and an
u-formed sledge. Theoretical work is done
in order to investigate such flows and to
develop prediction methods for the drag,
and means of controlling the slot flow.

Problem

In order to study the flow in the region
between the lower surface of the vehicle
and the ground a simplified model is con-
sidered: A thin flat plate of length £ and
thickness d moves parallel to the ground at
a small distance h with a constant speed
u_. The flow is assumed to be viscous, in-
compressible and twodimensional. In a coor-
dinate system (x,y) being fixed on the
plate the flow becomes stationary. Far up-
stream of the plate we have a parallel flow
with constant velocity u_. The ground moves
with the same speed underneath the plate
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Fig.1 Flat plate in twodimensional incom-
pressible viscous flow with ground effect.

(see Fig.1). Of most interest are the magni-
tude of the friction drag on the lower plate
surface and the question, wether a pressure
gradient is produced in the slot by the vis-
cous effects of the flow.

Governing Equations

For the calculation of the flow field the
vorticity transport equation for unsteady
planar flows and the Poisson equation for

the streamfunction are used:
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An additional Reynolds number may be defined
with the slot-heigth h:

u_-h
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The variables w and ¢ of the stationary
flow are found as asymptotic solutions for
the transient flow for t >« . Calculating
the nondimensional pressure distribution

(3)

{p, being the dimensional local static pres-
sure of the undisturbed flow far upstream
of the plate, p the fluid density) a new

variable, i.e. the nondimensional total
pressure
Py —P
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is introduced. The total pressure is ex-
pected to have a smoother distribution than
the static pressure, thus being more suited
for numerical treatment. Substituting eq.(4)
into the Navier-Stokes-equation for the
stationary flow
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one gets

- W (VX = -vpy -k Tx(VxW) (6)
and after taking the divergence of eq. (6)

we have a Poisson equation

bpp = w? - V§-Vo (7
for the total pressure. The right hand side
of eq.(7) are the solutions of egs. (1) and
(2) for the steady state case. Solving
eq.(7) one obtains the total pressure, and
the static pressure by application of eq.(4),
respectively.
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Boundary Conditions

The domain of calculation in the physi-
cal plane is semi-infinite (see Fig.1). The
flow on the left-hand-side boundary (x =-=)
and on the upper boundary (y =+=) represents
the undisturbed flow. At infinity far down-
stream of the plate (x=+«) the flow is
assumed to be a parallel flow with non-uni-
form velocity distribution but constant
static pressure p= 0. The plate surface
and the moving wall are streamlines. Regard-
ing the fact, that the tangential velocity
on the wall is equal to u= 1, whereas the
tangential velocity on the plate surface
(PL) is equal to W_= O,
ditions are:

£ the boundary con-

Plate surface, - 0.5 £ x £ 0.5, y = Ypp*

(n = normal on plate surface, subscript t

denotes tangential direction)
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Left-hand-side boundary, x = ==, Yy £Y < + oy
(subscript w denotes values on the wall)

w=0, ¢=y+¢wr PT=O . (9)

Lower boundary, -»<x<+®, y= Y,

3p
+ 4 (10)
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Right-hand-side boundary, x =+, YysYste:

3w 3y . =3 (u2-
Upper boundary, -« <x<+e«; y = +w:

o, Y o= 4w, (12)

Pp =0

The Neumann boundary conditions for the
total pressure, occuring in egs.(8) and
(10), are derived from the Navier-Stokes
equations for stationary flows, regarding
the above mentioned boundary conditions for
the velocities.

At a first glance the value of the

streamfunction at the moving wall, ww' de-

termining the mass flow passing through the



slot between the lower surface of the plate

and the moving wall, seems to be an addi-

tional unknown. However, as can be shown

by application of Green's theoreme, the
2*
that the circulation around the plate sur-

value is determined by the condition,
face has to be equal to zero, or in other
words: the non-slip-condition on the com-
plete plate surface can only be satisfied
*)

by one value of ww . The computation of

that value ww has to be done iteratively.

Coordinate Transformation

Before numerically evaluating eqgs. (1),
(2) and (7) the semi-infinite physical do-
main of Fig.2 is mapped into a finite rec-
tangular domain of computation (see Fig.2)
by the transformation
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Voc,+(1-c,ne2-g4 ' ’
2 2 g —1<E<1,

y(n) = oy qir, Y <Y<t (13)
- 0.5<n < 1.
The constants c, = 0.375,
Cy = 0.25,
€3 = _3'yw

were choosen such that the leading edge at
0.5
in the physical plane, are mapped into the

X -0.5, and the trailing edge at x
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Fig.2 Domain of computation.
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Paper in preparation.
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points & -0.5 and ¢

whereas the moving wall is given by the

+0.5 respectively,

line n ~0.5 in the computational plane.
Besides this, the transformation eq.(12)
was developed with the aim to have a more
closely packed distribution of grid points
in the regions of the leading and trailing
edge than in the remaining region of the

physical plane. After transformation of

egs. (1), (2) and (7), defining
=
r = FF (14)
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The differential boundary conditions in
egs. (8), (10) and (11) are transformed

analogously.

Numerical Method

For the numerical integration of the
vorticity transport equation the wellknown
"Forward—Time—Centered—Space"—Method(1) was
applied. It is of first-order accuracy in
time and of second~order accuracy in space.
The transformed Poisson equations (17) and
(18) were discretised using a five-point-
formula of second-order accuracy, which
converts egs.(17) and (18) into a set of
linear equations. They are solved by the
Gaus-Seidel(2) jteration procedure. Of



course, there exist more pcwerful methods
for the numerical treatment of egs.(16) -
(18) . However, since not much parameters

are involved (Reynolds number Re and slot-
height h), the above mentioned methods were
prefered because of their simplicity with
regard to quick programming. The differen-
(10) and
(11) were discretised using a forward three-

tial boundary conditions in (8),

point formula.

The fact that the boundary value of the
streamfunction on the upper boundary n = 1
is equal to infinite, requires a special
treatment of eq.(17) for the calculation
of the streamfunction along the grid line
j=i,
formed" streamfunction ¢ by

- 1 (see Fig.2). Defining a "trans-
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with
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= ——Eﬂ—” (20)
3
and 4 »0 for n + 1, one gets after intro-

ducing eq.(19) into eq.(17) the relation

29 2
28_2+ _8_r8_19+ 22’_"-5.2532+
dE 3L dE an? an dn
2 2
+ [(35 - s 2280 = —s wie,m 21
an an2

The discretisation of eq.(21) by second-
order difference~-formulas, regarding eq.{(20)}
and
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yields for the grid points ia4+1 5i’sie-1,

i=13,- 1, for which

(24)

is valid, the three-point formula
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from which the transformed streamfunction ¢
and, by application of eq. (19}, the ¢-val-

ues may be computed. A similar technique is
applied for the calculation of the velocity
Jo—1.

. i +1=<iz<i j =
components ul'J for i, el J

Practical Computation

The domain of computation is subdivided
into two regions. Region I, enclosing the
leading edge within the lines a-b-c¢c-4d -
-e -f -a has a finer mesh, the mesh in the
remaining region II is a coarser one. Both
meshes are rectilinear - orthogonal and have
constant spacing in the £-direction, and in
the n-direction, respectively. Due to the
smaller mesh sizes the maximal allowable
time step in mesh II is smaller, thus re-
quiring multiple performing of computation
in mesh I for reaching the time level of
mesh II. The flow variables w and ¢ within
regions I and II are calculated separately
as long as the time level is different in
both meshes, using the distribution of o
and ¢ along the lines a-b-c-d~-e-f-3
of the preceding time step as boundary con-
ditions. After the nondimensional time in
both regions is the same the distributions
of the calculated flow variables w and ¥
are matched along the lines a-b-¢c~d-e -
- £ -a by the condition that the values of
w and ¢y along and their derivates normal
to that lines have to be equal for both

regions.
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Results

Due to the relatively small core storage
and the low speed of the computer available
the Reynolds number Re had to be restricted

to small values. Hence, these results are

representative for low speeds only. In
Fig.3 the distribution of the shear stress
(exerted from the fluid on the wall) and
the pressure along the moving wall is given
1000 and three
different slot heights h/% = 0.04286,

= 0,02571, = 0.00857. The plate thick-
nesses .were d/¢ = 0.03361, = 0.02679,

= 0.02598 for these cases.

for a Reynolds number Re =
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Fig.3 Pressure (p) and shear stress (1)

distributions on the ground for three dif-
ferent slot-heights h/%, Re = 1000.

The magnitude of both the pressure and the
shear stress are increasing for the flow
-0.5.
Between -0.46 < x < 0.46 pressure and shear

approachinag the leading edge at x =

stress are practically constant. They are
decreasing downstream of the leading edge
(x = 0.5) to the values of the undisturbed
flow for x + + »., The pressure rise in
front of the plate is caused by the dis~
placement effect of the plate and by the
fact that the mass flow in the slot between
the lower surface of the plate and the
moving wall is reduced to approximately
half of the mass flow passing through the
slot~height-spacing h far upstream of the
plate (s. Fig.5). From this a displacement
effect is exerted on the whole flow field
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resulting in a flow circulating around the
leading edge from the lower to the upper
surface, thus producing the pressure rise
at the same time. From Fig.3 can be seen
that the shear stress increases with de-

creasing slot-height h.

The different behaviour of shear stress
and pressure distribution for the slot
height h = 0.00857 compared with that of
the other two other cases, also occuring
in the distributions on the plate surface
given in Fig.4, is caused by the fact that
the mass flow in the slot is reduced to
nearly zero due to the very small slot
height. Hence, both the plate and the slot
may be regarded as one rigid body, building
a step of length 2 on the moving wall.

The pressure distributions along the
plate surface, given in the left-hand-side
of Fig.4, are showing that a lifting force
is exerted from the flow on the flat plate.
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distributions on the upper and lower sur-
face of the plate for three different slot-
heights h/%, Re = 1000.

The magnitude of the shear stress (right
hand side of Fig.4) on the lower plate sur-
face is approximately equal to that of the
moving ‘wall. The shear stress on the upper
surface is, except for the leading edge

region, smaller than on the lower surface.



The strong gradients in the pressure and
shear-stress distribution of the leading
edge region are increasing with decreasing
plate thickness. In the case of an infinite
thin plate both distributions would deteri-
orate to a singularity at the sharp leading
edge.

In Fig.5 the u-velocity profiles are
given for some characteristic stations on
the x-axis. The flow is strongly affected
by the plate only at a distance less than
50 % of the plate length upstream of the
leading edge. Within the slot the velocity
distribution is practically linear. The
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Fig.5 wu-velocity profiles for three dif-

ferent slot-heights h/%, Re = 1000.

flow hereinis parallel and similar to a
Couette-Flow with a very small negative
pressure gradient in the flow direction.
The velocity profiles on the uper surface
of the plate indicate a flow like boundary
layer flow. However, the "boundary-layer-
thickness", is of the order of one. Down-
stream of the trailing edge we have the
typical velocity distribution of the near

wake.

Conclusion

The incompressible laminar flow past a
flat plate moving at a small distance par-
allel to the ground was investigated theo-
retically. The flow field is calculated by

numerical integration of the vorticity
transport equation and the Poisson equation
for the streamfunction. The computed re-
sults show that for a Reynolds number of
about 1000 (related to the plate length)

the flow in the slot between the lower sur-
face of the plate and the moving wall is

a Couette flow with a small negative pres-
sure gradient in the flow direction for a
range of slot heights between 0.8 % and 5 %
of the plate length. Within the slot a pres-
sure rise is induced by the viscous effects
of the flow,
exerted on the plate. The present investi-

from which a lifting force is

gation is a fore runner for the investiga-

tion of the flow in a threedimensional slot
of finite length and finite width. The com-
putation-method for that case is in develop-
ment but no results are available up to now.
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